3.2.11 \(\int (a+a \sec (c+d x))^{5/2} \, dx\) [111]

3.2.11.1 Optimal result
3.2.11.2 Mathematica [C] (warning: unable to verify)
3.2.11.3 Rubi [A] (verified)
3.2.11.4 Maple [B] (verified)
3.2.11.5 Fricas [A] (verification not implemented)
3.2.11.6 Sympy [F]
3.2.11.7 Maxima [B] (verification not implemented)
3.2.11.8 Giac [F]
3.2.11.9 Mupad [F(-1)]

3.2.11.1 Optimal result

Integrand size = 14, antiderivative size = 98 \[ \int (a+a \sec (c+d x))^{5/2} \, dx=\frac {2 a^{5/2} \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}+\frac {14 a^3 \tan (c+d x)}{3 d \sqrt {a+a \sec (c+d x)}}+\frac {2 a^2 \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{3 d} \]

output
2*a^(5/2)*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/d+14/3*a^3*tan 
(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+2/3*a^2*(a+a*sec(d*x+c))^(1/2)*tan(d*x+c) 
/d
 
3.2.11.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 6.45 (sec) , antiderivative size = 360, normalized size of antiderivative = 3.67 \[ \int (a+a \sec (c+d x))^{5/2} \, dx=\frac {\csc ^3\left (\frac {1}{2} (c+d x)\right ) \sec ^5\left (\frac {1}{2} (c+d x)\right ) (a (1+\sec (c+d x)))^{5/2} \sqrt {\frac {1}{1-2 \sin ^2\left (\frac {1}{2} (c+d x)\right )}} \sqrt {1-2 \sin ^2\left (\frac {1}{2} (c+d x)\right )} \left (256 \cos ^4\left (\frac {1}{2} (c+d x)\right ) \, _3F_2\left (\frac {3}{2},2,\frac {7}{2};1,\frac {9}{2};2 \sin ^2\left (\frac {1}{2} (c+d x)\right )\right ) \sin ^6\left (\frac {1}{2} (c+d x)\right )+512 \operatorname {Hypergeometric2F1}\left (\frac {3}{2},\frac {7}{2},\frac {9}{2},2 \sin ^2\left (\frac {1}{2} (c+d x)\right )\right ) \sin ^6\left (\frac {1}{2} (c+d x)\right ) \left (2-3 \sin ^2\left (\frac {1}{2} (c+d x)\right )+\sin ^4\left (\frac {1}{2} (c+d x)\right )\right )+\frac {21 \sqrt {2} \arcsin \left (\sqrt {2} \sqrt {\sin ^2\left (\frac {1}{2} (c+d x)\right )}\right ) \left (15-10 \sin ^2\left (\frac {1}{2} (c+d x)\right )+3 \sin ^4\left (\frac {1}{2} (c+d x)\right )\right )}{\sqrt {\sin ^2\left (\frac {1}{2} (c+d x)\right )}}-14 \sqrt {1-2 \sin ^2\left (\frac {1}{2} (c+d x)\right )} \left (45+30 \sin ^2\left (\frac {1}{2} (c+d x)\right )-31 \sin ^4\left (\frac {1}{2} (c+d x)\right )+12 \sin ^6\left (\frac {1}{2} (c+d x)\right )\right )\right )}{672 d \sec ^{\frac {5}{2}}(c+d x)} \]

input
Integrate[(a + a*Sec[c + d*x])^(5/2),x]
 
output
(Csc[(c + d*x)/2]^3*Sec[(c + d*x)/2]^5*(a*(1 + Sec[c + d*x]))^(5/2)*Sqrt[( 
1 - 2*Sin[(c + d*x)/2]^2)^(-1)]*Sqrt[1 - 2*Sin[(c + d*x)/2]^2]*(256*Cos[(c 
 + d*x)/2]^4*HypergeometricPFQ[{3/2, 2, 7/2}, {1, 9/2}, 2*Sin[(c + d*x)/2] 
^2]*Sin[(c + d*x)/2]^6 + 512*Hypergeometric2F1[3/2, 7/2, 9/2, 2*Sin[(c + d 
*x)/2]^2]*Sin[(c + d*x)/2]^6*(2 - 3*Sin[(c + d*x)/2]^2 + Sin[(c + d*x)/2]^ 
4) + (21*Sqrt[2]*ArcSin[Sqrt[2]*Sqrt[Sin[(c + d*x)/2]^2]]*(15 - 10*Sin[(c 
+ d*x)/2]^2 + 3*Sin[(c + d*x)/2]^4))/Sqrt[Sin[(c + d*x)/2]^2] - 14*Sqrt[1 
- 2*Sin[(c + d*x)/2]^2]*(45 + 30*Sin[(c + d*x)/2]^2 - 31*Sin[(c + d*x)/2]^ 
4 + 12*Sin[(c + d*x)/2]^6)))/(672*d*Sec[c + d*x]^(5/2))
 
3.2.11.3 Rubi [A] (verified)

Time = 0.53 (sec) , antiderivative size = 102, normalized size of antiderivative = 1.04, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.643, Rules used = {3042, 4262, 27, 3042, 4403, 3042, 4261, 216, 4279}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (a \sec (c+d x)+a)^{5/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{5/2}dx\)

\(\Big \downarrow \) 4262

\(\displaystyle \frac {2}{3} a \int \frac {1}{2} \sqrt {\sec (c+d x) a+a} (7 \sec (c+d x) a+3 a)dx+\frac {2 a^2 \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{3} a \int \sqrt {\sec (c+d x) a+a} (7 \sec (c+d x) a+3 a)dx+\frac {2 a^2 \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} a \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (7 \csc \left (c+d x+\frac {\pi }{2}\right ) a+3 a\right )dx+\frac {2 a^2 \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 4403

\(\displaystyle \frac {1}{3} a \left (3 a \int \sqrt {\sec (c+d x) a+a}dx+7 a \int \sec (c+d x) \sqrt {\sec (c+d x) a+a}dx\right )+\frac {2 a^2 \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} a \left (3 a \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+7 a \int \csc \left (c+d x+\frac {\pi }{2}\right ) \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx\right )+\frac {2 a^2 \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 4261

\(\displaystyle \frac {1}{3} a \left (7 a \int \csc \left (c+d x+\frac {\pi }{2}\right ) \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx-\frac {6 a^2 \int \frac {1}{\frac {a^2 \tan ^2(c+d x)}{\sec (c+d x) a+a}+a}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}\right )+\frac {2 a^2 \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {1}{3} a \left (7 a \int \csc \left (c+d x+\frac {\pi }{2}\right ) \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {6 a^{3/2} \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}\right )+\frac {2 a^2 \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 4279

\(\displaystyle \frac {2 a^2 \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}+\frac {1}{3} a \left (\frac {6 a^{3/2} \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {14 a^2 \tan (c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )\)

input
Int[(a + a*Sec[c + d*x])^(5/2),x]
 
output
(2*a^2*Sqrt[a + a*Sec[c + d*x]]*Tan[c + d*x])/(3*d) + (a*((6*a^(3/2)*ArcTa 
n[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/d + (14*a^2*Tan[c + d* 
x])/(d*Sqrt[a + a*Sec[c + d*x]])))/3
 

3.2.11.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4261
Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(b/d) 
  Subst[Int[1/(a + x^2), x], x, b*(Cot[c + d*x]/Sqrt[a + b*Csc[c + d*x]])], 
 x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]
 

rule 4262
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Simp[(-b^2)*C 
ot[c + d*x]*((a + b*Csc[c + d*x])^(n - 2)/(d*(n - 1))), x] + Simp[a/(n - 1) 
   Int[(a + b*Csc[c + d*x])^(n - 2)*(a*(n - 1) + b*(3*n - 4)*Csc[c + d*x]), 
 x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0] && GtQ[n, 1] && Inte 
gerQ[2*n]
 

rule 4279
Int[csc[(e_.) + (f_.)*(x_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_S 
ymbol] :> Simp[-2*b*(Cot[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]])), x] /; Free 
Q[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4403
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(d_ 
.) + (c_)), x_Symbol] :> Simp[c   Int[Sqrt[a + b*Csc[e + f*x]], x], x] + Si 
mp[d   Int[Sqrt[a + b*Csc[e + f*x]]*Csc[e + f*x], x], x] /; FreeQ[{a, b, c, 
 d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0]
 
3.2.11.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(171\) vs. \(2(84)=168\).

Time = 1.53 (sec) , antiderivative size = 172, normalized size of antiderivative = 1.76

method result size
default \(\frac {2 a^{2} \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (3 \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )+3 \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right )+8 \sin \left (d x +c \right )+\tan \left (d x +c \right )\right )}{3 d \left (\cos \left (d x +c \right )+1\right )}\) \(172\)

input
int((a+a*sec(d*x+c))^(5/2),x,method=_RETURNVERBOSE)
 
output
2/3/d*a^2*(a*(1+sec(d*x+c)))^(1/2)/(cos(d*x+c)+1)*(3*(-cos(d*x+c)/(cos(d*x 
+c)+1))^(1/2)*arctanh(sin(d*x+c)/(cos(d*x+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1 
))^(1/2))*cos(d*x+c)+3*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(sin(d*x+ 
c)/(cos(d*x+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))+8*sin(d*x+c)+tan(d*x 
+c))
 
3.2.11.5 Fricas [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 310, normalized size of antiderivative = 3.16 \[ \int (a+a \sec (c+d x))^{5/2} \, dx=\left [\frac {3 \, {\left (a^{2} \cos \left (d x + c\right )^{2} + a^{2} \cos \left (d x + c\right )\right )} \sqrt {-a} \log \left (\frac {2 \, a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right ) + 2 \, {\left (8 \, a^{2} \cos \left (d x + c\right ) + a^{2}\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{3 \, {\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}}, -\frac {2 \, {\left (3 \, {\left (a^{2} \cos \left (d x + c\right )^{2} + a^{2} \cos \left (d x + c\right )\right )} \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) - {\left (8 \, a^{2} \cos \left (d x + c\right ) + a^{2}\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )\right )}}{3 \, {\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}}\right ] \]

input
integrate((a+a*sec(d*x+c))^(5/2),x, algorithm="fricas")
 
output
[1/3*(3*(a^2*cos(d*x + c)^2 + a^2*cos(d*x + c))*sqrt(-a)*log((2*a*cos(d*x 
+ c)^2 - 2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*s 
in(d*x + c) + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)) + 2*(8*a^2*cos(d*x + 
 c) + a^2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(d*cos(d* 
x + c)^2 + d*cos(d*x + c)), -2/3*(3*(a^2*cos(d*x + c)^2 + a^2*cos(d*x + c) 
)*sqrt(a)*arctan(sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqr 
t(a)*sin(d*x + c))) - (8*a^2*cos(d*x + c) + a^2)*sqrt((a*cos(d*x + c) + a) 
/cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c)^2 + d*cos(d*x + c))]
 
3.2.11.6 Sympy [F]

\[ \int (a+a \sec (c+d x))^{5/2} \, dx=\int \left (a \sec {\left (c + d x \right )} + a\right )^{\frac {5}{2}}\, dx \]

input
integrate((a+a*sec(d*x+c))**(5/2),x)
 
output
Integral((a*sec(c + d*x) + a)**(5/2), x)
 
3.2.11.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1395 vs. \(2 (84) = 168\).

Time = 0.54 (sec) , antiderivative size = 1395, normalized size of antiderivative = 14.23 \[ \int (a+a \sec (c+d x))^{5/2} \, dx=\text {Too large to display} \]

input
integrate((a+a*sec(d*x+c))^(5/2),x, algorithm="maxima")
 
output
1/6*(30*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1) 
^(3/4)*a^(5/2)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - 
2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4) 
*((12*a^2*cos(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(2*d*x + 
 2*c) - 3*a^2*sin(2*d*x + 2*c) - 4*(3*a^2*cos(2*d*x + 2*c) + 4*a^2)*sin(3/ 
2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))*cos(3/2*arctan2(sin(2*d*x 
+ 2*c), cos(2*d*x + 2*c) + 1)) + (12*a^2*sin(2*d*x + 2*c)*sin(3/2*arctan2( 
sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 3*a^2*cos(2*d*x + 2*c) - a^2 + 4*(3 
*a^2*cos(2*d*x + 2*c) + 4*a^2)*cos(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x 
 + 2*c))))*sin(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)))*sqrt( 
a) + 3*((a^2*cos(2*d*x + 2*c)^2 + a^2*sin(2*d*x + 2*c)^2 + 2*a^2*cos(2*d*x 
 + 2*c) + a^2)*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2* 
d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)) 
)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - cos(1/2*arcta 
n2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2* 
c), cos(2*d*x + 2*c)))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos( 
2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c 
) + 1))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + sin(1/2*arc 
tan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 
2*c), cos(2*d*x + 2*c)))) + 1) - (a^2*cos(2*d*x + 2*c)^2 + a^2*sin(2*d*...
 
3.2.11.8 Giac [F]

\[ \int (a+a \sec (c+d x))^{5/2} \, dx=\int { {\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \,d x } \]

input
integrate((a+a*sec(d*x+c))^(5/2),x, algorithm="giac")
 
output
sage0*x
 
3.2.11.9 Mupad [F(-1)]

Timed out. \[ \int (a+a \sec (c+d x))^{5/2} \, dx=\int {\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{5/2} \,d x \]

input
int((a + a/cos(c + d*x))^(5/2),x)
 
output
int((a + a/cos(c + d*x))^(5/2), x)